Electronic structure and many-body effects in self-assembled quantum dots
نویسندگان
چکیده
A detailed model for the electronic properties of self-assembled InAs/GaAs quantum dots (SADs) is presented, with emphasis on inter-level transitions and many-body effects. The model is based on the self-consistent solution of three-dimensional Poisson and Schrödinger equations within the local (spin-) density approximation. Nonparabolicity of the band structure and a continuum model for the strain between GaAs and InAs results in positionand energydependent effective mass. The electronic spectra of SADs of various shapes have been determined with intraband level transitions and mid-infrared optical matrix elements. Shell structures obeying Hund’s rule for various occupation numbers in pyramidal SADs agree well with recent capacitance measurements. It is shown that many-body interactions between orbital pairs of electrons are determined in a first approximation by classical Coulomb interaction.
منابع مشابه
Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy
In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...
متن کاملWavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy
In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...
متن کاملElectronic States of Quantum Dots
The self-assembled quantum dots are grown on wetting layers and frequently in an array-like-assembly of many similar but not exactly equal dots. Nevertheless, most simulations disregard these structural conditions and restrict themself to simulating of a pure single quantum dot. Moreover, many simulations settle for the linear model with constant instead of the rational effective mass. In this ...
متن کاملElectron energy level calculations for semiconductor nanostructures
Although self-assembled quantum dots are grown on wetting layers, most simulations exclude the wetting layer. The neglected effects on the electronic structure of a pyramidal InAs quantum dot embedded in a GaAs matrix are investigated based on the effective one electronic band Hamiltonian, the energy and position dependent electron effective mass approximation, and a finite height hard-wall 3D ...
متن کاملModeling of High Temperature GaN Quantum Dot Infrared Photodetectors
In this paper, we present calculations for different parameters of quantum dot infrared photodetectors. We considered a structure which includes quantum dots with large conduction-band-offset materials (GaN/AlGaN). Single band effective mass approximation has been applied in order to calculate the electronic structure. Throughout the modeling, we tried to consider the limiting factors which dec...
متن کامل